

Field Data Template

Crash Avoidance

Technical Bulletin CA 003

Implementation 1st January 2026

PREFACE

DISCLAIMER: Euro NCAP has taken all reasonable care to ensure that the information published in this protocol is accurate and reflects the technical decisions taken by the organisation. In the unlikely event that this protocol contains a typographical error or any other inaccuracy, Euro NCAP reserves the right to make corrections and determine the assessment and subsequent result of the affected requirement(s).

CONTENTS

INTRODUCTION	3
1 GENERAL INFORMATION	4
2 SENSOR SPECIFICATIONS	5
3 CLAIMED ROBUSTNESS LAYERS	6
4 VALIDATION SUMMARY	7
4.1 Methodology	7
4.2 Dataset	9
4.3 Object classification evidence	10

INTRODUCTION

This document is intended to provide guidance to the Vehicle Manufacturer at the time of providing evidence of perception performance and function availability under the presence of adverse environmental and/or infrastructure conditions, constituting the perception-related robustness layers of the Euro NCAP Crash Avoidance assessment protocol.

It is expected that the Vehicle Manufacturer has collected performance evidence in real world conditions. Degradation of functionality under certain conditions may be expected and shall be therefore accepted, and the function shall in no case be fully unavailable.

1 GENERAL INFORMATION

Item	Details
Manufacturer	[Enter]
Vehicle Model	[Enter]
Other models sharing the same system	[Enter]
S/W version at the time of the assessment	[Enter]
Report date [dd/mm/yyyy]	[Enter]

2 SENSOR SPECIFICATIONS

Sensor #	Item	Details
Sensor 1	Type (e.g., Camera, radar, LiDAR)	[Enter]
	Function (e.g., AEB, FCW, LKA)	[Enter]
	Countermeasures to increase availability (e.g., heating panel)	[Enter]
	Mounting position (schematics)	[Enter]
Sensor 2	Type (e.g., Camera, radar, LiDAR)	[Enter]
	Function (e.g., AEB, FCW, LKA)	[Enter]
	Countermeasures to increase availability (e.g., heating panel)	[Enter]
	Mounting position (schematics)	[Enter]
Sensor 3	Type (e.g., Camera, radar, LiDAR)	[Enter]
	Function (e.g., AEB, FCW, LKA)	[Enter]
	Countermeasures to increase availability (e.g., heating panel)	[Enter]
	Mounting position (schematics)	[Enter]

3 CLAIMED ROBUSTNESS LAYERS

Check the boxes where minimum function performance is claimed across collision partners.

Minimum function performance is defined as the system ability to detect and classify a road user under the presence of different robustness layers, with high availability. Temporary degradation is accepted under some circumstances – these are to be described in chapter 4.

	ustness layers Perception)	Claimed performance across collision partner				
Туре	Layer	Car	PTW	Bicyclist	Pedestrian	Lane Boundary
et	Туре					
Target	Appearance					
	Adverse weather conditions					
	Illumination (Night time)					
Illum (High su Su Su Illum (head on ve	Illumination – Glare (High intensity sunlight)					
	Illumination – Glare (headlights from oncoming vehicles)					
	Infrastructure / clutter					
	Obscuration / Obstruction					

4 VALIDATION SUMMARY

4.1 Methodology

Describe the methods and tools used to evaluate perception performance and function availability under the presence of robustness layers:

Methodology used	Description of methodology
Perception training dataset	[Fill in if applicable]
FOT	[Fill in if applicable]
Field Test	[Fill in if applicable]
Fleet Insight	[Fill in if applicable]
Testing on Test Track	[Fill in if applicable]

Where:

Perception Training Dataset: Selective and targeted driving in environments with high exposure to various road users (e.g., different target types and appearances) under diverse conditions, such as adverse weather conditions (AWC), varying illumination, and different infrastructure/clutter scenarios.

FOT (Field Operational Test): Long-term studies conducted on a limited number of fleet vehicles under normal driving conditions. These vehicles are equipped with loggers and measurement systems to analyse driver behaviour, vehicle usage, and human-system interaction.

Field Test: A large-scale testing campaign using test drivers to simulate real-world user profiles, including different road environments and environmental conditions. Designed to balance true positives (TP) and false positives (FP), this test can also support re-simulations during the development phase.

Fleet Insight: Retrospective large-scale data collection from all customer vehicles, providing a fast feedback loop for continuous system improvement in real-world conditions. This process begins after the vehicle—or any vehicle sharing the same system—has been launched to the market.

Testing on a Test Track: System performance validation under controlled, repeatable, and reproducible conditions. This includes verifying true positive events in scenarios that are difficult to encounter naturally or unsafe to conduct in real-world environments.

4.2 Dataset

Enter the characteristics of the validation dataset collected in real-world traffic conditions, through the different method(s) used:

ltem	Detail	Perception training dataset	FOT	Field Test	Fleet insight
Length [km]	-	[Enter]	[Enter]	[Enter]	[Enter]
Road category	Urban	[Enter]	[Enter]	[Enter]	[Enter]
[%]	Interurban	[Enter]	[Enter]	[Enter]	[Enter]
	Highway	[Enter]	[Enter]	[Enter]	[Enter]
Day/Nighttime	Day time	[Enter]	[Enter]	[Enter]	[Enter]
[%]	Nighttime	[Enter]	[Enter]	[Enter]	[Enter]
Sky [%]	Clear	[Enter]	[Enter]	[Enter]	[Enter]
	Cloudy	[Enter]	[Enter]	[Enter]	[Enter]
Road condition [%]	Dry	[Enter]	[Enter]	[Enter]	[Enter]
	Wet	[Enter]	[Enter]	[Enter]	[Enter]
	Snow	[Enter]	[Enter]	[Enter]	[Enter]

4.2.1 KPIs

		Actual observed values			
KPI	Description	Perception training dataset	FOT	Field Test	Fleet insight
Detection Rate	Percentage of correctly identified relevant* objects	[Enter]	[Enter]	[Enter]	[Enter]
Classification Accuracy	Precision in relevant* object identification	[Enter]	[Enter]	[Enter]	[Enter]
False Positive Rate	AEB function activations for non-existent objects and existing objects out of the collision path	[Enter]	[Enter]	[Enter]	[Enter]

^{*} Relevant: Collision partner that may be relevant for a potential AEB function activation (e.g., within the range, lateral distance and target kinematics)

4.3 Object classification evidence

DISCLAIMER: The Vehicle Manufacturer declares that, for each of the evidences provided below on detection and classification, the function's collision avoidance strategy remains unchanged under these conditions compared to the Euro NCAP Crash Avoidance use case where speed reduction performance is claimed.

The Vehicle Manufacturer shall provide at lest 3 visual examples that shows system classification of across the claimed collision partners under the presence of the prescribed robustness layers, consisting of short clips of 3 to 5 seconds in .mp4 format, and labelled with a high level description in .txt format.

Robustness Layer	Collision Partner	3 evidence examples provided?	Evidence 1	Evidence 2	Evidence 3
	Car		TT_C_1.mp4, TT_C_1.txt	TT_C_2.mp4, TT_C_2.txt	TT_C_3.mp4, TT_C_3.txt
	PTW		TT_M_1.mp4, TT_M_1.txt	TT_M_2.mp4, TT_M_2.txt	TT_M_3.mp4, TT_M_3.txt
Target Type	Pedestrian		TT_P_1.mp4, TT_P_1.txt	TT_P_2.mp4, TT_P_2.txt	TT_P_3.mp4, TT_P_3.txt
	Bicycle		TT_B_1.mp4, TT_B_1.txt	TT_B_2.mp4, TT_B_2.txt	TT_B_3.mp4, TT_B_3.txt
	Lane boundary		TT_L_1.mp4, TT_L_1.txt	TT_L_2.mp4, TT_L_2.txt	TT_L_3.mp4, TT_L_3.txt
Target Appearance	Car		TA_C_1.mp4, TA_C_1.txt	TA_C_2.mp4, TA_C_2.txt	TA_C_3.mp4, TA_C_3.txt
	PTW		TA_M_1.mp4, TA_M_1.txt	TA_M_2.mp4, TA_M_2.txt	TA_M_3.mp4, TA_M_3.txt
	Pedestrian		TA_P_1.mp4, TA_P_1.txt	TA_P_2.mp4, TA_P_2.txt	TA_P_3.mp4, TA_P_3.txt

Robustness Layer	Collision Partner	3 evidence examples provided?	Evidence 1	Evidence 2	Evidence 3
	Bicycle		TA_B_1.mp4, TA_B_1.txt	TA_B_2.mp4, TA_B_2.txt	TA_B_3.mp4, TA_B_3.txt
	Lane boundary		TA_L_1.mp4, TA_L_1.txt	TA_L_2.mp4, TA_L_2.txt	TA_L_3.mp4, TA_L_3.txt
	Car		AW_C_1.mp4, AW_C_1.txt	AW_C_2.mp4, AW_C_2.txt	AW_C_3.mp4, AW_C_3.txt
	PTW		AW_M_1.mp4, AW_M_1.txt	AW_M_2.mp4, AW_M_2.txt	AW_M_3.mp4, AW_M_3.txt
Adverse Weather Conditions	Pedestrian		AW_P_1.mp4, AW_P_1.txt	AW_P_2.mp4, AW_P_2.txt	AW_P_3.mp4, AW_P_3.txt
	Bicycle		AW_B_1.mp4, AW_B_1.txt	AW_B_2.mp4, AW_B_2.txt	AW_B_3.mp4, AW_B_3.txt
	Lane boundary		AW_L_1.mp4, AW_L_1.txt	AW_L_2.mp4, AW_L_2.txt	AW_L_3.mp4, AW_L_3.txt
	Car		IN_C_1.mp4, IN_C_1.txt	IN_C_2.mp4, IN_C_2.txt	IN_C_3.mp4, IN_C_3.txt
	PTW		IN_M_1.mp4, IN_M_1.txt	IN_M_2.mp4, IN_M_2.txt	IN_M_3.mp4, IN_M_3.txt
Illumination (Night time)	Pedestrian		IN_P_1.mp4, IN_P_1.txt	IN_P_2.mp4, IN_P_2.txt	IN_P_3.mp4, IN_P_3.txt
	Bicycle		IN_B_1.mp4, IN_B_1.txt	IN_B_2.mp4, IN_B_2.txt	IN_B_3.mp4, IN_B_3.txt
	Lane boundary		IN_L_1.mp4, IN_L_1.txt	IN_L_2.mp4, IN_L_2.txt	IN_L_3.mp4, IN_L_3.txt
	Car		IS_C_1.mp4, IS_C_1.txt	IS_C_2.mp4, IS_C_2.txt	IS_C_3.mp4, IS_C_3.txt

Robustness Layer	Collision Partner	3 evidence examples provided?	Evidence 1	Evidence 2	Evidence 3
	PTW		IS_M_1.mp4, IS_M_1.txt	IS_M_2.mp4, IS_M_2.txt	IS_M_3.mp4, IS_M_3.txt
Illumination –	Pedestrian		IS_P_1.mp4, IS_P_1.txt	IS_P_2.mp4, IS_P_2.txt	IS_P_3.mp4, IS_P_3.txt
Glare (High intensity sunlight)	Bicycle		IS_B_1.mp4, IS_B_1.txt	IS_B_2.mp4, IS_B_2.txt	IS_B_3.mp4, IS_B_3.txt
	Lane boundary		IS_L_1.mp4, IS_L_1.txt	IS_L_2.mp4, IS_L_2.txt	IS_L_3.mp4, IS_L_3.txt
	Car		IH_C_1.mp4, IH_C_1.txt	IH_C_2.mp4, IH_C_2.txt	IH_C_3.mp4, IH_C_3.txt
Illumination –	PTW		IH_M_1.mp4, IH_M_1.txt	IH_M_2.mp4, IH_M_2.txt	IH_M_3.mp4, IH_M_3.txt
Glare (Headlights from vehicle	Pedestrian		IH_P_1.mp4, IH_P_1.txt	IH_P_2.mp4, IH_P_2.txt	IH_P_3.mp4, IH_P_3.txt
vehicles)	Bicycle		IH_B_1.mp4, IH_B_1.txt	IH_B_2.mp4, IH_B_2.txt	IH_B_3.mp4, IH_B_3.txt
	Lane boundary		IH_L_1.mp4, IH_L_1.txt	IH_L_2.mp4, IH_L_2.txt	IH_L_3.mp4, IH_L_3.txt
Infrastructure / Clutter	Car		IC_C_1.mp4, IC_C_1.txt	IC_C_2.mp4, IC_C_2.txt	IC_C_3.mp4, IC_C_3.txt
	PTW		IC_M_1.mp4, IC_M_1.txt	IC_M_2.mp4, IC_M_2.txt	IC_M_3.mp4, IC_M_3.txt
	Pedestrian		IC_P_1.mp4, IC_P_1.txt	IC_P_2.mp4, IC_P_2.txt	IC_P_3.mp4, IC_P_3.txt
	Bicycle		IC_B_1.mp4, IC_B_1.txt	IC_B_2.mp4, IC_B_2.txt	IC_B_3.mp4, IC_B_3.txt

Robustness Layer	Collision Partner	3 evidence examples provided?	Evidence 1	Evidence 2	Evidence 3
	Lane boundary		IC_L_1.mp4, IC_L_1.txt	IC_L_2.mp4, IC_L_2.txt	IC_L_3.mp4, IC_L_3.txt
Obscuration / Obstruction	Car		OO_C_1.mp4, OO_C_1.txt	OO_C_2.mp4, OO_C_2.txt	OO_C_3.mp4, OO_C_3.txt
	PTW		OO_M_1.mp4, OO_M_1.txt	OO_M_2.mp4, OO_M_2.txt	OO_M_3.mp4, OO_M_3.txt
	Pedestrian		OO_P_1.mp4, OO_P_1.txt	OO_P_2.mp4, OO_P_2.txt	OO_P_3.mp4, OO_P_3.txt
	Bicycle		OO_B_1.mp4, OO_B_1.txt	OO_B_2.mp4, OO_B_2.txt	OO_B_3.mp4, OO_B_3.txt
	Lane boundary		OO_L_1.mp4, OO_L_1.txt	OO_L_2.mp4, OO_L_2.txt	OO_L_3.mp4, OO_L_3.txt